Elliptic partial differential equations (PDEs) are a central pillar in the mathematical description of steady-state phenomena across physics, engineering, and applied sciences. Characterised by the ...
This is a preview. Log in through your library . Abstract Partial differential equations with random coefficients can be cast as parametric problems with a potentially infinite-dimensional parameter ...
We consider an elliptic Kolmogorov equation λu − Ku = f in a separable Hilbert space H. The Kolmogorov operator K is associated to an infinite dimensional convex gradient system: dX = (AX − DU(X)) dt ...
Partial differential equations (PDE) describe the behavior of fluids, structures, heat transfer, wave propagation, and other physical phenomena of scientific and engineering interest. This course ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results